
Launch MFD, version 1.6.2
Orbiter module

http://sf.net/projects/enjomitchsorbit

Copyright © 2007 "Vanguard" initial MFD author

Copyright © 2007-2014 Szymon Ender "Enjo” author and maintainer
ender-sz att go2 dot pl

Copyright © 2007 Pawel Stiasny "She'da'Lier" contributor

Copyright © 2008 Mohd Ali "Computerex" contributor

Copyright © 2008 Chris Jeppesen "Kwan" PEG code

Copyright © 2008 Steve Arch "agentgonzo" co-developer

Copyright © 2009 CJ Plooy & Tim Blaxland KOST library
All rights reserved

Table of Contents
1) Overview ... 2
2) Installation ... 2
3) Compatibility ... 2
4) Usage ... 3

Key summary ... 3
HOT! Target inclination ... 3
HOT! Target altitude selection for PEG 5
Vessel variables .. 6
PID autopilot .. 6
PID autopilot manual configuration 7
Pitch program ... 8
Roll program .. 9
Course correction (inclination) ... 9
Course correction (LAN) ... 11
Launch Compass .. 12
PEG algorithm .. 12
Graphical eycandies ... 13
Sound configuration ... 13
Time to Intersection .. 13
Half of Orb. Vel. Time variable .. 13
Direct ascent ... 14
HOT! Final distance selection for Direct Ascent 14
Great Circles (a'la Map MFD) .. 14

5) Basic theory ... 15
6) Tutorial ... 18

Planning .. 18
Defining Half of Orb. Vel. Time ... 18
Performing the launch .. 19
Correctness checks ... 20

7) Known issues & to do .. 20
8) Author's notes .. 21
9) Credits .. 21
10) Directories / files list .. 22
11) Informations for developers ... 23

Back to Contents 1 / 30 Launch MFD manual © Szymon Ender

http://sf.net/projects/enjomitchsorbit

Multiple Vessels Support Library (LGPL) 23
Introduction .. 23
Usage .. 24

MFDButtonPage (LGPL) ... 26
Math and Systems libraries (BSD) 26
MFDSound++ (LGPL) ... 27
PID controller (BSD) ... 28

12) Disclaimer .. 30

1) Overview
Launch MFD calculates the appropriate launch azimuth, insertion profile (SSTO only) and time to
launch and guide a spaceship to intercept a satellite or a specific orbit, for example described as
parking orbit before ejection in TransX. Many physical influences are taken into account to provide
you with a good accuracy of the calculations. After the launch, the MFD shows you an orientation
of ship, that is needed to reach the described orbit. The orientation is adaptive in regard to the
current situation in means of position and velocity. You can also use an included fuzzy logic
autopilot, which follows the provided orientation smoothly (although blindly). All those features
may be used simultaneously and independently for each ship in the simulation.

There's also an extra feature in beta stage of development: Direct Ascent algorithm, that, given
some simplifying assumptions, will allow the pilot to launch and guide a spaceship into an
immediate satellite interception course.
The Direct Ascent feature is described in section 7)

2) Installation
Unpack in your Orbiter folder, using folder names. Then, enable Modules tab in Orbiter's
Launchpad and activate LaunchMFD
Alternatively, you can use this program: http://www.orbithangar.com/searchid.php?ID=2701
For Launch MFD to work, you need to install VC++ 2005 Redistributable Package if you haven't
done so already.

3) Compatibility
Works with Orbiter 2010 only. It will not work with any previous versions of Orbiter. Special care
has been undertaken for the MFD to work with future releases of Orbiter, by constantly updating the
code to match with the recent Orbiter API, leaving out the deprecated functions.

It's also possible to use the 2006 version of the module with Orbiter 2010 and DX9 client with GDI
compatibility enabled, which provides HUD drawing feature for older vessels.

Additional SDKs used:
HUDDrawer (required), ModuleMessaging (required) and OrbiterSound (optional)

Back to Contents 2 / 30 Launch MFD manual © Szymon Ender

http://orbithangar.com/searchid.php?ID=6412
http://orbithangar.com/searchid.php?ID=6023
http://www.microsoft.com/downloads/details.aspx?familyid=32bc1bee-a3f9-4c13-9c99-220b62a191ee&displaylang=en
http://www.orbithangar.com/searchid.php?ID=2701

4) Usage

Key summary

Shift + = Increase inclination.
Shift - = Decrease inclination.
Shift] = Increase inclination adjustment factor.
Shift [= Decrease inclination adjustment factor.
Shift T = Set target or inclination (equ. frame) or inclination LAN (ecl. frame).
Shift A = Set target altitude for PEG algorithm, or set final distance for DA program
Shift H = Switch HUD display
Shift M = Switch modes. Currently - Standard, Launch Compass, and Direct Ascent.
Shift D = Default action of the selected mode
Shift H = switch HUD display
Shift S = Change Error notification sound, or disable it completely (3 states).
Shift O = Switch off-plane correction
Shift P = Switch PID autopilot
Shift G = Switch drawing of great circles
Shift K = Switch track mode of great circles
Shift Z = Zoom in great circles
Shift X = Zoom out great circles
Shift C = Increase precision of great circles
Shift V = Decrease precision of great circles
Shift I = Switch pitch guidance
Shift E = Switch buttons page

HOT! Target inclination

Set target's inclination by either using the TGT button (or (Shift T) combo) or use manual
inclination selection:

Shift + = Increase Inclination.
Shift - = Decrease Inclination.
Shift] = Increase inclination adjustment factor.
Shift [= Decrease inclination adjustment factor.

You can use left mouse click on an MFD button responsible for increasing value to increase it, and
you can click right mouse button on the same MFD button to decrease that value. The contrary
works for a button responsible for decreasing a value. Notice that unfortunately this feature works
only in the Glass Cockpit mode (when only MFDs are visible). This feature has been introduced to
make you, the user, got used to it, because we'll have to get rid of some buttons to make some place
for others eventually.

Shift T = Select target or inclination (equ. frame) or inclination LAN (ecl. frame).

If you use the TGT button or (Shift T) combo, then this input box will appear:

Back to Contents 3 / 30 Launch MFD manual © Szymon Ender

You have the following options here:

a) a target string, which can be either an artificial or natural satellite, eg. ISS or Moon, which don't
need to orbit your source body at all. The target's inclination is then read and set as your target
inclination - useful for intercepting that satellite.

HOT! b) “TransX” or “TX” (case insensitive), which results in obtaining the TransX' Escape Plan's
settings. See below. Minimum TransX' version 2014.01.11 is required.

b) an arbitrary inclination in the equatorial frame - useful for deploying satellites at a certain
inclination. The equatorial frame is used here because satellites inclinations are usually described in
this frame.

c) an arbitrary inclination and LAN in the equatorial frame, designated by additional 'q' character –
same as above but additionally gives more constraints on the orbit's orientation

d) an arbitrary inclination and LAN in the ecliptic frame, designated by additional 'c' char. It is
useful if you want to enter an orbit with a certain inclination, and a certain orientation, defined by
LAN.

Whenever you enter a combination of inclination with LAN, as in this case (also applies to
“TransX”), be aware that due to non-spherical gravity sources (Orbiter's option), the targeted
dummy vessel's LAN will drift, so be sure to target the same orbital parameters again a few hours
before the launch to update the dummy's position.

Ad. b)
TransX' outputs the necessary inclination and LAN in its first stage, displayed after setting an
Ejection plan and picking a target, then setting up the transfer (velocities and date, etc.), and after
that, returning to the first stage.

The proper incl. & LAN values are displayed by TransX after correctly adjusting the Ej.
Orientation. The grey line, whose position depends on Ej. Orientation, must be placed so that it is
some length before your position, when your imaginary apoapsis touches the surface of the
planet in this projection. You will need to accelerate time to find out when the apoapsis is in place.
The redundant distance between your position and the grey line defines your radial distance to the
target orbit, thus the Time to Intersection. If you read on, you'll understand why the Time to
Intersection must be greater than 0.

Back to Contents 4 / 30 Launch MFD manual © Szymon Ender

http://orbithangar.com/searchid.php?ID=6393

Incorrect. The grey line is before our position,
but our apoapsis isn't touching the surface

Correct. The grey line is slightly before our
position and our apoapsis is touching the

surface

You'll find very valuable TransX tutorials on Flytandem's web page:
http://www.flytandem.com/orbiter/

HOT! You can't launch a spacecraft into an inclination lower than your latitude (in equatorial
frame), for example to Moon or Mir from Cape Canaveral. If you intend to intercept these targets
anyway, you need to launch into inclination same as your latitude, by launching in a purely eastern
direction. After reaching the orbit, you need to perform a plane change manouevre. It will cost less
fuel when you launch in the correct time. Launch MFD supports such launches, by using a dummy,
which has the same LAN as the target, whose name needs to be entered as usual. Note however, that
such launches are limited only to the second possible heading, in case of Cape – southern, because
launching into the northern one would increase your latitude to values exceeding the dummy's
inclination, which confuses the MFD.
In case of selecting a celestial body as your target, you will also have to target it again a few hours
before launch, because the dummy may be subject to LAN drift.
If you want to launch a winged spacecraft, like DG, instead of launching east, using a dummy, it
will surely be more efficient to launch southwards and cruise in atmosphere for as long as your
latitude is greater than target's inclination, and then, still in atmosphere make a turn towards the
target orbit's plane to create am optimal intersection, effectively enabling Off-Plane correction. The
turn will be more efficient than an in-orbit plane change, because of much smaller velocity which
you need in the atmosphere, and because the velocity vector will be changed by your wings' lift, not
engine power. It will make even more sense, if you use DG-S, which is equipped with SCRAM
engines.

HOT! Target altitude selection for PEG

First, please note that the user interaction with old Reference Altitude is now discontinued.
Modifying it made hardly any difference anyway. The new target altitude is for PEG algorithm only.
When you set a target in the previous input box, both the PeA and ApA are automatically set to 20

Back to Contents 5 / 30 Launch MFD manual © Szymon Ender

http://www.flytandem.com/orbiter/

km above the atmosphere or 50 km above surface of planets without the atmosphere. If this doesn't
suit you, then after pressing (Shift A) or ALT button, this input box will appear, allowing you to
change the target alt:

You can enter for example:

250
for PeA = ApA = 250 km (a circular orbit), or
230 260
or an equivalence:
260 230
for an elliptic 230x260 km orbit, or:
a
for an automatic altitude selection. This means a circular orbit 20 km above planet's atmosphere or
50 km above surface for bodies without the atmosphere, or:
t
for setting the altitude to target's (PeA + ApA) / 2, ie. target's mean altitude.
TransX
or an equivalence:
TX
for obtaining the altitude from TransX' Escape Plan

Vessel variables

Launch MFD sometimes relies on variables stored in text files, under Config\MFD\LaunchMFD\
directory. Most notable examples of such variables are PID autopilot settings and pitch programmes.
The following strategy is applied for storing and reading the variables: variables stored during
simulation are automatically exported to VesselClass_variables.cfg upon simulation exit. Some of
these variables are read when you restart the simulation, but some are not, like the mentioned PID
AP settings and pitch programmes. If you want to make these settings persistent, you have to
manually move them from VesselClass_variables.cfg to VesselClass.cfg file. Then, the variables'
duplicates in the VesselClass_variables.cfg will be ignored and the module will never overwrite
your persisted settings in VesselClass.cfg. Both config files and subdirectories in which they exist
are created automatically.

PID autopilot

The Fuzzy Logic based autopilot has been replaced by a PID based autopilot, due to poor quality of
the former. Except for better quality (up to 100x time acc. in space) and more configurability,
nothing has changed.

After the AP is enabled, with (Shift P), or AP button , it will try to bank the ship so that the flight
director is on top, which lets the ship use its aerodynamic surfaces better to orient itself to the
marker. You may soon notice that the flight director's pitch increases greatly, especially if you use
complex flight model. This is the PEG's problem and you should take this into account by not
trusting the PEG and thus the AP too much. The solution is roughly pitching up manually before
enabling the AP to get a proper readout first. There's also a moment when the AP switches to space
operation mode, where there's obviously little or no drag. You will notice this when the AP suddenly
“jumps” to a bit different pitch. After reaching orbit, the AP will deactivate itself automatically.

Back to Contents 6 / 30 Launch MFD manual © Szymon Ender

If you disable the autopilot manually, it will reset all the control surfaces and enable killrot
autopilot. Be sure to disable it later.

There's a possibility to use the AP only for azimuth corrections, for example when you use a
SCRAM powered ship (DG-S, XR ships), and so you want to be able to control the pitch by
yourself. You can do it by pressing (Shift I) or PTC button, so that the pitch readout and guidance
are disabled, and then by enabling the AP. After you reach nearly orbital velocity, I advice against
enabling the PEG with PTC button, because it will provide erratic values. Instead, you'd better
finish the insertion by yourself.

The AP may be ran with time acceleration of 10x in atmosphere and 100x in space and for
multiple vessels simultaneously, independently of the MFD itself, which means that the MFDs can
be shut down during ascent.

Shift I = Disable pitch guidance
Shift P = Switch PID autopilot

PID autopilot manual configuration

The PID autopilot is as universal as possible, meaning that its values are configured only once for
DeltaGlider and hardcoded. For each different ship class, there's a calculation performed, which
compares the current vessel's angular accelerations and compares them to that of the DG. This ratio
lets the PID increase or decrease its values, so the AP works on the same settings.

If however they don't work, there's a possibility of defining the PID values by hand for each vessel
class. The values can be adjusted in a running simulation with [Shift 1] or PXY button for X & Y
axes and [Shift 2] or PBN for bank. Both types have to be adjusted for atmospheric and space PIDs.
The currently used PID is displayed on the bottom of main MFD page. The same PID type would be
adjusted in the moment of pressing PXY or PBN.

Once you are satisfied with your values, you'll be interested in saving them in a persistent config
file, so that they can take effect after you restart the simulation. The PID definitions are searched for
in Config\MFD\LaunchMFD\ directory. The exact config file name can be obtained through the
PID tuning input box with PXY.

The available and read tags and their expected data are:

SPACE_XY = (vector)
SPACE_BANK = (vector)
ATMO_XY = (vector)
ATMO_BANK = (vector)
ATMO_CONTINUOUS_CONTROL_SWITCH_ANGLE = (float)
ATMO_BANK_TARGET_WINGS_LEVEL_SWITCH_ANGLE = (float)

A vector consists of three space separated floating point values, while float is one floating point
value. The vectors' are used to pass PIDs' values - proportional gain, or Kp, derivative gain, or Kd,
and integral gain, or Ki.

SPACE_XY and SPACE_BANK PIDs are used for X and Y axes control as well as bank control,
correspondingly. Both in space. The same philosophy is used for atmospheric autopilot.

ATMO_CONTINUOUS_CONTROL_SWITCH_ANGLE is an angle in degrees, for which the PID AP
switches on, and brings its smooth control. Beyond that angle, the RCS and control surfaces work
with full power, because only such behavior makes sense for winged craft. Increasing value of this
variable increases the spectrum of angles, in which the AP works in its whole scale, this means that
it's function of power(distance) will be stretched on this distance. For non winged craft it makes

Back to Contents 7 / 30 Launch MFD manual © Szymon Ender

less sense to limit the continuous control spectrum, because they are already pitched to 90°, so
reaching the target attitude wouldn't take much time. To disable the limit completely, a value of 180
degrees must be chosen, because the maximal angular distance is in range (-180°, 180°). Such
setting would also eliminate a visible sudden jump in control when switching from atmospheric PID
to space PID.

ATMO_BANK_TARGET_WINGS_LEVEL_SWITCH_ANGLE is an angle in degrees, for which the
AP changes its bank from target marker to wings level. Before that, it tries obtain such bank, that the
target marker remains directly above the ship, so that it can reach it much quicker by pitching, rather
than yawing later on.

A typical definition for the DeltaGlider would be:

SPACE_XY = 2.5 16.0 0
SPACE_BANK = 1.0 12.0 0
ATMO_XY = 2.0 2.5 0
ATMO_BANK = 3.0 6.0 0
ATMO_CONTINUOUS_CONTROL_SWITCH_ANGLE = 10.0
ATMO_BANK_TARGET_WINGS_LEVEL_SWITCH_ANGLE = 20.0

Shift 1 = tune atmo/space PID for X & Y axes
Shift 2 = tune atmo/space PID for bank

Pitch program

Currently the PEG algorithm assumes that the current stage is the final stage. This means that if the
vessel has more than one stage, the automatic PEG guidance will fail. What can be done about it is
defining a pitch program, which guides the ship roughly during the first, booster assisted, stage.
Then, after that stage runs out of fuel, the PEG would kick into action and fix the eventual errors.
This can be done by defining the pitch program from the start, until the moment right after booster
separation. The pitch programs should be placed in the same config file where you place your PID
definitions. An exemplary pitch program could look like the following:

PITCH_PROGRAM_ALTITUDE
Earth
0 90
10.5 80
22.7 75.8
40 45
60 30
END_PITCH_PROGRAM_ALTITUDE

The first column denotes altitude (argument) in kilometers, while the second column denotes the
according pitch (value). The values for arguments between the designated altitudes are linearly
interpolated. Therefore if you need a more precise and oval pitch profile, you need to increase the
granularity, by inserting more altitude-pitch pairs.

For each planet, defined by the first line of the programme, there can be one pitch program defined.
They should be placed in the same file with their own start and end markers, for example:
PITCH_PROGRAM_ALTITUDE
Earth
0 90
10.5 80
22.7 75.8
40 45
60 30

Back to Contents 8 / 30 Launch MFD manual © Szymon Ender

END_PITCH_PROGRAM_ALTITUDE

PITCH_PROGRAM_ALTITUDE
Mars
0 90
15 70
30 50
40 35
END_PITCH_PROGRAM_ALTITUDE

If no planet name has been chosen, Earth is assumed by default.

Because the PEG should start to work as soon as boosters are separated, and because the booster
separation time is constant, it is reasonable to define the pitch as time based, where the booster
separation time (or a few seconds after it) would end the time based pitch program. Therefore,
assuming that the separation occurs at T = 127s, a typical time based pitch program would look like
the following:

PITCH_PROGRAM_TIME
Earth
0 90
20 90
130 20
END_PITCH_PROGRAM_TIME

If time based program and altitude based program for the same planet are found in one vessel's
config file, then the time based one is preferred.

If you are able to fine tune a spacecraft's pitch program, then please share your work in this thread
on Orbiter-Forum.

Roll program

There are two additional configuration boolean switches available for each craft: ROLL_NEEDED
and UPSIDE_DOWN. The first one tells the AP, that roll should be performed right after launch, and
the second one tells that the craft should ascend in an upside down manner, such as the Space
Shuttle. Also, UPSIDE_DOWN implies ROLL_NEEDED, so an entry in Shuttle Atlantis config file
could look like the following:

UPSIDE_DOWN = TRUE

Currently, the roll is performed after the craft reaches a pitch of 88.5 degrees or below, because only
then the AP can be sure in which direction to roll.

Course correction (inclination)

After you have launched, the Launch MFD calculates the azimuth required to reach the given
inclination continuously, subtracting your current North & East velocity from the required orbital
velocity allowing to perform course corrections. The error indicator beneath tells
you exactly how many degrees (and decimal parts of them) you should turn to be right on target. Be
aware that it's a pure difference between the current and necessary azimuths and is no kind of actual
prediction. Because of the imposed subtraction order, the error indicator is always negative if you
are faced left of the required azimuth and positive if you are faced right of it. If no target is selected,
the error indicator refers to ascending azimuth if your heading is (270°, 360°) or (0°, 90°). If your
heading is (90°, 270°) then the indicator refers to the descending azimuth. Same applies for
retrograde orbits (Fig. 1 below).

Back to Contents 9 / 30 Launch MFD manual © Szymon Ender

http://www.orbiter-forum.com/showthread.php?t=26705

Fig. 1. Actual azimuth referencing when no target is selected and Error's sign.

In the example on the right our actual azimuth is
359° which is between 270 and 360 so is the
northern halve, thus the error refers to the
calculated, ascending azimuth which is 59.87°
for the given inclination, so the difference is
-60.64°, meaning that we are 60.64° left of the
nominal azimuth.

If, on the other hand you have selected a target,
then the error variable will always refer to the
appropriate azimuth, which means that you don't
have to watch Map MFD to know in which
direction to launch any more.

Fig. 2. Example of Error referencing
when no target is selected.

As you begin your ascent and gaining speed, the error indicator becomes more and more sensitive.
Your job is to keep it as close to 0.00° as possible. If you won't be doing so, and will keep it eg. at
1.00°, you'll notice very soon that it begins to increase faster and faster, because you will be
applying the velocity in a wrong direction, which makes a need of bigger course corrections later. A
thing to remember is that it's more fuel efficient to turn your orbit when your velocity is smaller, so
point yourself at the proper direction as soon as possible.

To understand it, imagine that you are already on low Earth orbit (about 7776 m/s) and you want to
align planes with another target. You'd have to use some amount of fuel. On the other hand if you
are sitting on pad and your orbital velocity is mere 408 m/s (as on Cape), switch on Map MFD,
accelerate in any direction other than east and see your semi-orbit (red line) changing ultra-easy,
and that's what it was – changing inclination. It was performed so easy because your orbital

Back to Contents 10 / 30 Launch MFD manual © Szymon Ender

velocity was so small

Note however, that because the Error variable becomes more sensitive when you get closer to a
specified orbit, an Error of 0.10° is a lesser deviation when at 3/4 of orbit velocity than 0.10° shortly
after launch, so you don't need to worry about getting Error to exactly 0.00° during final stages of
your ascent. A second thing worth knowing is that because Launch MFD constantly checks your
current velocity and chooses the appropriate course accordingly, so even if you swerve, you'll
always be directed towards a heading allowing to reach an orbit with the specified inclination, but
swerving also makes an unpleasant effect: because you were accelerating in the wrong direction,
one velocity vector component is over magnified, so you'll need to use some of your thrust to
counter the component, which results in extending your insertion time. This is bad for flight time
measurement and earlier flight profile imitating. Read the subsection titled Time to Intersection.

Course correction (LAN)

Launch MFD normally corrects only your inclination on the fly. Agentgonzo has implemented an
off-plane correction, which means that not only your inclination will be corrected, but also your
LAN. The correction can be explained with the following graph:

Top-down view of situations when you are using and not using off-plane correction, assuming
there's no body's rotation

The correction can be switched on with Shift O combination or with COR button. It will be
activated once your position on pad is close enough to intersection with target's orbit. The correction
deactivates itself in the last seconds of the flight, because its guidance is meaningless then. The
correction also doesn't work with staged vessels currently, as it assumes constant thrust of the
vessel.

Despite that the off-plane course correction should help you getting the LANs right, it's not an
alternative of timing the launch correctly. The worse you time the launch, the more fuel you'll waste,
although your final orbital parameters should be correct in both inclination and LAN. For timing the
launch, see Half of Orb. Vel. Time subsection, and Tutorial section.

Shift O = Switch off-plane correction

Back to Contents 11 / 30 Launch MFD manual © Szymon Ender

Launch Compass

Thanks to Agentgonzo, we now have the Launch
Compass inside Launch MFD. The Launch
Compass is especially useful for vertically
launched crafts, like the Shuttles, allowing you
to perform perfect roll manoeuvres. It shows the
heading, resulting from your targeted
inclination, and your current heading versus
pitch in a 2D display, and other info. This
information is quite hard to interpret, using the
standard HUD display while launching
vertically.

The Launch Compass has several view modes ,
that you can switch them using the default action
button - DEF or Shift D combination. The
modes are:
a) North up - the compass is static, and your heading and direction are represented by the moving T
marker
b) Head up - your direction representation is static, and the compass rotates depending on your
direction
c) Heading up - your heading representation is static, and the compass rotates depending on your
heading

Notice that east switched places with west on the compass. There are two reasons: First is that sky
on astronomical charts is displayed this way, and second is that if they were placed the "normal"
way, then the visual representation of your roll manoeuvre would be counter intuitive, ie. you'd see
the marker rotate in a direction contrary to your commands.

Shift D = Default action: Switch display mode.

PEG algorithm

Thanks to Kwan and Agentgonzo, we now have PEG algorithm integrated with Launch MFD. It
allows to guide your ship along an insertion trajectory to an orbit specified by periapsis and
apoapsis altitudes with Shift A combination or ALT button. The PEG is enabled automatically,
without user's interaction, and displayed on HUD as a cross marker. The guidance marker also takes
into account the calculated heading, needed for inserting into an orbit with a specified inclination.
This means, that you'll be guided by hand into your orbit. The PEG algorithm is adaptive, just like
the standard heading calculation, which means that it allows to perform course corrections, instead
of giving you only one chance to get your orbit right.
If the guidance marker is out of your view, an arrow marker will be pointing toward it.

Warning: PEG in its original form is designed for Single Stage To Orbit craft only, which for
example the Shuttle is not. Nonetheless the PEG will activate itself on the final stage (after SRBs
separation), but don't be fooled, because before that the guidance marker will be exactly on your
zenith, so you'll have to rely on your experience for a proper launch profile during the first stage.

Back to Contents 12 / 30 Launch MFD manual © Szymon Ender

Graphical eycandies

She'da'Lier coded an initial graphical representation of the error that allows to get an idea of how
fast you change your error. I modified it a bit so that now it switches its scale, ie. It gets more
sensitive as the error decreases thus allowing to eyeball the 0.00° state. Particularly, the scale is
±180 if your Error is (180,90), ±90 if it's (90,5) and ±5 if below 5

You will notice that Error value's colour is grey if the value is smaller than ±0.20° and turns green if
it goes beyond that, so it's easy to spot that you're off course.

Because the HUD display requires your ship to be derived from VESSEL2 class, the HUD display
won't work for very old ships, which are derived from VESSEL class. This is why I've implemented
the same functionality as HUD gives in the basic MFD area. You'll see that the graphical error's
representation is now two-dimensional, representing heading error and pitch error. You may not
always want the pitch error to be included, so it can be switched with Shift I combination, or PTC
button. For the same reason, the PEG guidance marker is now displayed also in the Launch
Compass mode.

While actually using the Launch MFD, I noticed that one can easily forget about orbit circulation
and go elliptic if he keeps watching the error indicator too closely. This is why when both of your
actual velocity components (North & East) exceed calculated ones for the specified orbit, you'll get
a red note saying: “Cut your engines!” under the error indicator. It will still be displayed even if you
cut them but your velocity still exceeds the calculated one. It's one of those “it's not a bug, it's a
feature” things. After all you may want to decelerate then a bit to make the orbit circular. This is
when the note disappears. As mentioned, because both components must exceed the calculated
ones, the feature will not work if you were accelerating in a wrong direction in the final parts of
your ascent thus made only one velocity component exceed the required one.

Sound configuration

MFD sound can be permanently turned off using the Launch MFD config file, whose exact path is
Config\MFD\LaunchMFD\LaunchMFD.cfg

Time to Intersection

After selecting a target, Launch MFD now shows an absolute amount of seconds to next launch
window, ie. to a moment in time, when your and the target's orbits crossing will be placed on the
position of your launch site. Thanks to this variable, you don't need to watch Align MFD any more
to know approximately when the launch should occur.

Half of Orb. Vel. Time variable

Another feature is a Half of Orb. Vel. Time variable. It calculates how long it takes from a moment
of taxiing/liftoff to reaching half of orbital velocity, during a current launch, so you will get a
picture when you should launch next time, to not only equalize inclinations but LANs as well
(check Basic Theory). To use the value properly, launch when Time to Intersection equals Half of
Orb. Vel. Time. It turned out that the ~10s error in Shuttles which I mentioned before, was caused
by the fact that Align MFD doesn't display exactly seconds when you're grounded. Just try to
accelerate time to make Time to Intersection = 313 (the proper Half of Orb. Vel. Time for Shuttles)
and compare it with Align MFD. You should see about 300 s there.
An obvious negative of the Half of Orb. Vel. Time variable is that if you launch a manually
controlled spacecraft, your ascent profile will have to resemble the previous one, so it is performed
in a similar time. If you are on a second ascent and your NLTime for this launch is close to the

Back to Contents 13 / 30 Launch MFD manual © Szymon Ender

previous one, you can be almost sure that you'll get the LANs to to close values.

Direct ascent

Direct ascent mode can be selected by pressing (Shift M) combination or MOD button. After
activating direct ascent autopilot with (Shift P) or AP button, it works by automatically getting ship
into a suborbital trajectory directly in the target orbit's plane, cruising, preferably with SCRAM
engines, while waiting for the target to catch up on us. Once an injection window is available, the
AP will bring you very close to the target.
There are two modes of direct ascent:

1) Regular – after injection, the ship immediately reaches the target orbit
2) Synchronization – the ship creates a synchronization orbit and the interception occurs at the

orbits' intersection
The Synchronization mode should be used when the suborbital velocity is so high, that it's
impossible to drastically change the orbit's shape as in the Regular mode. This is a typical case for a
full throttle XR SCRAM ascent. After performing autoburn, you should use Align planes MFD and
Synchro MFD to fine tune the rendezvous time. You must make sure that the plane alignment is
performed before reaching apoapsis. If a node is positioned behind apoapsis, you must accelerate
orbit (ant-)normal, to place the node before the apoapsis.

The modes are switched with (Shift D) or DEF button on the direct ascent page.

The Playback folder of LaunchMFD installation contains examples of direct ascent usage with
descriptions.

HOT! Final distance selection for Direct Ascent

When the autopilot for regular DA is enabled, using (Shift A) or ALT button, you may enter the
final distance to the target in meters. Positive values mean ending n meters above target and
negative mean ending below the target. Notice that for reasons of realistic spaceflight, the positive
values make less sense than negative, because you always approach the target from below, firing
thrusters in the direction of target. If you intend to end up above the target, there would be a
moment when you cross the altitude of the target, firing your exhaust right at the target.

Great Circles (a'la Map MFD)

To help timing your launches visually, without the need of having Map MFD opened, great circles
of your ship and of the target are being displayed. They can be controlled only via keyboard, and the
controls are the same as for Map MFD. However, because currently there's no moving feature,
zooming work only in the tracking mode.

Shift G = Switch drawing of great circles
Shift K = Switch track mode
Shift Z = Zoom in
Shift X = Zoom out
Shift C = Increase precision of great circles
Shift V = Decrease precision of great circles

Back to Contents 14 / 30 Launch MFD manual © Szymon Ender

5) Basic theory
The problem of calculating an exact launch azimuth appears when you want to meet with a

target in orbit and you have relatively low amount of fuel and error margin, or you want to save as
much of the fuel as possible. By launching with the azimuth, calculated earlier, ie, such that will
allow you to insert yourself in an orbit with the same inclination as target, you save the fuel which
you'd have to use for a plane change manoeuvre otherwise.

Some basic information:
Inclination is in this case the angle between a reference plane (eg. ecliptical or equatorial. We refer
to the second here.) and your current orbit's plane.
An orbit with inclination = 0° passes directly over equator, from west to east. Orbit with 90°
inclination passes from south to north pole. Orbit with 180° inclination is also placed over the
equator but goes from east to west. Orbits with inclinations between 90° and 180° are called
“retrograde orbits”.
Launch azimuth is the angle between north direction and the projection of the initial orbit plane
onto the launch location. It is the compass heading you head for when you launch. (from
OrbiterWiki)
Azimuth = 0° is north, 90° is east, 180° is south and 270° is west
If you are interested in how to calculate the launch azimuth, visit this page:
http://www.orbiterwiki.org/wiki/Launch_Azimuth
and check OrbiterSDK\Samples\LaunchMFD\Math\AzimuthMap.cpp file for the implementation.

For input values of Cape Canaveral (it's latitude), ISS (it's inclination) and Earth's physical
parameters the equations give a result of about 42.85° (north east) or (180°-42.85°) = 137.15°
(south east), so you should launch in one of this directions depending on ISS' orbit projection on
Map MFD (yellow line) “ascends” (42.85° – on the left picture) or “descends” (137.15° on the right
picture), w.r.t. your launch site.

Fig. 4 Choosing a proper heading, depending on situation.
Left - choosing northern, right - southern azimuth

During your ascent the azimuth will be changing despite you're going straight. Don't worry about it
because it's normal and results from one of the basic equations (check OrbiterWiki) from which we
can see that an inertial azimuth is a function of your current (thus changing) latitude. The other
reason is Earth's rotation.
Assuming that you are able to use Launch MFD to insert into an orbit with the inclination identical
as the target's (which is represented on Map MFD as your semi-sine amplitude), there's also another
problem you'll face: timing the launch (represented as phase shift).

If you targeted ISS and accelerated time, you would see ISS' orbit moving left (from east to west).
The movement results from compensation of Earth's rotation on a static 2d map, just as Sun moves
from east to west. Your objective is to launch some small amount of time before ISS' orbit passes
almost exactly overhead. On the left picture below we see how your orbit would look like if we

Back to Contents 15 / 30 Launch MFD manual © Szymon Ender

http://www.orbiterwiki.org/wiki/Launch_Azimuth

launched too early and on the right – too late. Notice that inclinations are already the same.

Fig. 5. Results of incorrect launch timings.
Left - launched too early, right - too late

After selecting a target, Launch MFD gives you almost an exact number of seconds to the moment
when a target's orbit passes your launch site (not entirely exact because LAN drift resulting from
non-spherical gravity sources, hasn't been coded as according to Orbiter's API Reference, Orbiter
sometimes disables the non-sph. grav. src. under high time accelerations, which would render long
time predictions useless).
If you are sitting on a prograde rotating body (every planet in Solar system, except Venus), your
LAN will be increasing, while LANs of bodies in orbit will be relatively stable (not entirely due to
non-spherical gravity sources but let's forget about it for now). We want to launch so that upon
insertion our LAN would have grown big enough to match that of target. However, note that our
LAN won't stop increasing right after launch, but only when we're in orbit. If we launched exactly
when ISS was overhead (Time to Intersection = 0), we wouldn't create our orbit in time and ISS'
orbit would move relatively west of us.

Fig. 6. Left: Time to intersection,
Right: your LAN should increase up to less than 166.45º

The solution is launching when Time to Intersection = time after which your craft reaches half
of its final orbital velocity, that is Half of Orb. Vel. Time. You can read the Orbital Speed from
Surface MFD after switching it to Orbital Speed mode (OS). So if the final orbital velocity of a
Shuttle inbound for ISS is 7776 m/s then you should start when the Shuttle gains velocity equal half
of the orbital velocity = 7776 / 2 = 3888 m/s, which the Shuttle achieves in 310 seconds. In
practice, knowing the exact time for a manually controlled vehicle is impossible, and even knowing
this time from the previous launch using the MFD (Half of Orb. Vel. Time), you're not able to
make your profile completely resemble the previous one.

Back to Contents 16 / 30 Launch MFD manual © Szymon Ender

Also notice that you can't use these equations for
orbits whose inclinations amounts are less than
your latitude. Explaining mathematically,
because the argument of ArcSin can't be bigger
than “1” (Check OrbiterWiki). Speaking in a
human language: If you're starting from Cape
Canaveral at current dates, and you target the
Moon, then even with maximal effort from your
side (launching on heading = 90° = east) you
won't align the plane of your orbit with Moon's
in a way other than the standard one and its
derivatives. It must happen either on LEO or
between trans-lunar injection (TLI) and Moon
interception, inclusive. Fig. 7: Inability to align planes with a target

whose inclination is lower than your latitude by
launching with any heading.

Back to Contents 17 / 30 Launch MFD manual © Szymon Ender

6) Tutorial
In this example I chose to launch to rendezvous with Lunar station Luna-OB1

Fig. 8. Planning the launch

Planning

Look at the picture above. I have targeted Luna-OB1 in both Launch MFD and Map MFD. Luna-
OB1 is the yellow cross moving on a yellow orbit in Map MFD. The station's inclination readout
says 91.51°, which is greater than 90°, thus the station moves on a retrograde orbit. You can also
judge it by observing the yellow cross' movement on its orbit with a help of time acceleration.
Luna-OB1 (Luna for short) moves as the vertical arrow points. Moon is a prograde rotating body as
well, so Luna's orbit (as well as any other) will be shifting west on a static map. This knowledge
helps us to determine:
a) which crossing of Luna's orbit and our position will reach us first – i.e. the eastern one
b) which azimuth of two to choose – i.e. Luna will be passing us from south to north on that
crossing, so we'll choose the ascending = 354.75° (northern) azimuth to get us on the right orbit.

Defining Half of Orb. Vel. Time

Knowing everything we need, we can make a test launch to help us determine when it will be a
good time to perform the actual ascent (to get a proper Half of Orb. Vel. Time). I don't think that
things like that are made in reality, but manual ascents also aren't performed. You can now launch in
any heading of the two and try to keep your Error relatively small. Time is calculated from the
moment you activate thrusters, so if you need to yaw your ship in a proper direction for some
amount of time, you'll have to take this time into account during the second launch either by
making the same yaw or subtracting it from time or waiting the same amount of time above the
ground. When you reach half of orbital velocity, you'll be informed about it by a male voice. In the
picture below, I've overdone with the velocity a bit, but it doesn't matter, as Half of Orb. Vel. Time
var. stays persistent up to a moment when you land, and reach the half of orbital velocity again.

Back to Contents 18 / 30 Launch MFD manual © Szymon Ender

Fig. 9. Half of orbital velocity reached, NLT variable set.

Performing the launch

You may now use Scenario Editor to place your
ship back in a base and await for a launch
window. If you are using a realistic craft or such
that can't be simply moved by the Editor, you'll
need to remember the Half of Orb. Vel. Time
and restart the scenario. Accelerate time (T) and
wait for Luna's orbit to nearly cross your
position, indicated by a small time to Launch
Window. Launch when Time to Intersection =
Half of Orb. Vel. Time from Launch MFD (or
the value that you had to remember before
restarting the scenario), and try to imitate your
previous launch as much as you can. This time,
though, you can chose only one of the two
headings, i.e. the one flashing in grey.

Fig. 10. These variables' equality indicates a
good time for launch. Note off-plane correction

switched on with COR button

If your second launch is performed faster or longer so that half of orbital velocity is reached in a
different time, there will be LAN difference upon reaching orbit, depending on how fast the body
rotates. On the Moon it won't be much of a difference because it hardly rotates. On Earth on the
other hand, your LAN would be about 0.05° different for a 10 second shift in launches.

Back to Contents 19 / 30 Launch MFD manual © Szymon Ender

Correctness checks

When you are in Orbit, you can check which thing you will have done wrong, ie:
a) not following the Error's directives or
b) launching at incorrect time
by must switching Orbit MFD to Equatorial Frame, and comparing your inclination and that of
target for point a), and compare LANs for b). If your LAN is greater on a prograde rotating body,
then you launched too late, and vice versa. Switching Orbit MFD to the equatorial frame is
mandatory, as this is the frame which LaunchMFD uses. There's not much difference in Moon's
equ/ecl frames but for Earth you could be misinformed that your inclinations were different if your
LANs were very different in the ecliptic frame, while in the equatorial frame inclinations could be
the same.

Fig. 11. Despite a different insertion time, our final parameters are nearly perfect.
Notice the Equatorial Frame in Orbit MFD, as this is the frame which is used by Launch MFD

I'm sorry, I was wrong before, pointing you to compare the four variables in Align MFD, which
only uses ecliptic frame, in which inclination is also LAN dependent.
If for some reason you forgot to watch Orbit MFD and to circularise your orbit, you'll be informed
by Launch MFD visually and verbally by the necessity of cutting your engines.

7) Known issues & to do
– PEG works only for SSTO ships. Multistage PEG is the next target

Back to Contents 20 / 30 Launch MFD manual © Szymon Ender

8) Author's notes

a) Support - I'll always try to provide support for my addon when I have time. If you have found a
bug in Launch MFD, then write a private message to me at http://orbiter-forum.com/ (nick - Enjo)
or send me an e-mail. It's very possible, that if you start a thread, I might not be able to read it.

b) Localisation - If you want to make you own language version of Launch MFD, then do the same
as above. Check the file OrbiterSDK/samples/LaunchMFD/localisation.h to measure the necessary
amount of work. By localising Launch MFD, you agree with GPL v3 license statements (nothing
that hurts you, but protects me instead).

9) Credits
The following people somehow influenced the current state of the add-on (loose order):
- Jerry Jon Seller (book "Understanding Space" from where the new equations come. I've
modified them a bit)
- Andy44 (the above equations and launch compass idea provider)
- Jaggers, R. F. (The original PEG algorithm author)
- Urwumpe (sharing info about timing the launch and orbits' crossing)
- Vanguard (dressing into a MFD and coding basic functions)
- Martin Schweiger, PhD. (providing ScnEditor's sources which I use here and giving Orbiter :))
- Auditek (Sim4Lin) (testing, bug reports, and pointing me to a good voice synthesizer - Festival)
- David (bug reports)
- She'Da'Lier (help with saving values, coding graphical representation and much patience :))
- Jarmonik,gp (inspiration for the current MFD's functions)
- Dan Steph (OrbiterSound 3.5 SDK which allowed Launch MFD to use sound)
- Chaps @ OrbitHangar IRC (programming help)
- Gary (suggestions about sound)
- Daver (sharing some Public Domain code)
- X-Viila (nicely whitening Earth's map used in documentation)
- Computerex (sharing code that allows using multiple vessels)
- Kwan (PEG algorithm implementation, which we borrowed)
- Face (helping Agentgonzo with Flight Director)
- Agentgonzo (help with targeting celestial bodies, PEG integration, HUD display, source cleanup)
- C3PO (providing a dummy mesh for LaunchMFD-Probe)
- Zachstar, and others from Orbiter-Forum (testing)
- Face, Fizyk (trigonometry help, which resulted in correctly calculating time to launch)
- Ed Williams (awesome page about aviation - http://williams.best.vwh.net/avform.htm)
- Chris Veness (another aviation page - http://www.movable-type.co.uk/scripts/latlong.html)
- Prof. Edvard Sazonov (Fuzzy Engine for Java)
- Agnieszka Nowak-Brzezińska, PhD. (my MSc. thesis advisor)
- BrianJ, RisingFury (help with maximal angular acceleration of a vessel)
- Cras (testing)
- turtle91 (great bug report about CTDs with incompatible vessel classes (VESSEL2))
- orb (help with the problem above)
- boogabooga (bug report – CTD when switching to Direct Ascent page)
- blixel, SolarLiner (suggestion about setting the final distance to target in Direct Ascent program)

Back to Contents 21 / 30 Launch MFD manual © Szymon Ender

http://www.movable-type.co.uk/scripts/latlong.html
http://williams.best.vwh.net/avform.htm
http://orbiter-forum.com/

Sorry if I forgot anybody. If you think you should be in that list, then send me a private message at
orbiter-forum.com or e-mail me.

10) Directories / files list

Config\MFD\LaunchMFD
Config\Vessels\LaunchMFD-Probe.cfg
Doc\LaunchMFD
Flights\Direct ascent DG-S - phase 1
Flights\Direct ascent DG-S - phase 2
Flights\Direct ascent DG-S - phase 2 - synchro
Meshes\LaunchMFD-Probe.msh
Modules\Plugin\LaunchMFD.dll
Orbitersdk\samples\LaunchMFD
Scenarios\LaunchMFD
Scenarios\Playback\LaunchMFD
Sound\LaunchMFDEnjo

Back to Contents 22 / 30 Launch MFD manual © Szymon Ender

http://orbiter-forum.com/

11) Informations for developers
In the process of cleaning up the code of Launch MFD, once I finally learned some practical

Object Oriented Programming, I've separated many reusable basic classes, that can be used in your
MFD or even other projects. The classes' licenses are quite permissive. The classes which contain
basic math, which I classify as Human Legacy, are licensed under BSD, which means that you can
use them even in a closed sourced / commercial project as long as you provide copyright note (I
didn't invent these equations, but I've put them together). The more advanced ones are licensed
under LGPL, which means that you either GPL/LGPL your project (thus sharing your code) if you
use these specific classes, or you link them dynamically (via .dll). The LGPL license has been
chosen to at least try induce some more code sharing from other developers. Aside from having a
better informed community this way, note that it helps maintaining the developers' addons, even
after they leave the scene. There are too many examples of orphaned, thus currently entirely junk
addons, just because somebody didn't want to share their thoughts for some unknown reason.

Let's start from the most interesting package, which is:

Multiple Vessels Support Library (LGPL)

Introduction

Normally the MFDs in Orbiter are constructed as one instance. Imagine opening an MFD in
a vessel. The MFD's constructor is called which creates the instance and its variables are initialised.
Now you make some changes in the MFD, thus modifying the internal variables. Next, you close
the MFD (destructor is called) and reopen it (constructor is called). This causes all the modified
variables to be reinitialised. Martin's solution to this (see Custom MFD in OrbiterSDK) is storing
the variables in static member variables (meaning: common for all class instances) by using method
MFD::StoreStatus(), which is called just before MFD destruction. This way, after MFD
reconstruction, the then called MFD::RecallStatus() allows to read the static data and put it back
where it were. An amateur's solution would be to even avoid MFD::StoreStatus() and
MFD::RecallStatus() altogether, and store the values in global variables. Both solutions would
solve the problem of closing and opening an MFD in one vessel. However, they obviously have
negatives as they present a lousy approach to Object Oriented Programming, especially the global
variable approach. The Martin's solution, although more encapsulated, demands that you keep track
of all the variables, and store and recall each one of them – note that you have to remember to do
this for each new variable, which is quite a tedious and human error-prone work. It makes you
wonder if other than some encapsulation, there's any positive compared to the global variables
approach. There's also one big common flaw in both of these approaches: the choices made in the
MFD will be shared between all vessels.

Fortunately, the MFD destruction / reconstruction scheme is consequently exercised during
switching vessels, and the MFD's constructor is being passed a pointer to the currently operated
vessel (treat it as a vessel's ID). This feature can be used to cheat the system a bit and use the
pointer as a key of a structure, which contains sets of each vessel's individual variables. This way,
whenever an MFD is constructed, the passed pointer can be used to search for the particular vessel's
set of variables, thus “restoring” the values, or if the set of variables didn't exist yet, a new set is
created.

AFAIK, the idea first came from Computerex and Face, although Face uses hashtables,
which in my opinion is a bit too complicated approach compared to what can be done, so I
engineered the Computerex' solution, by making it less global and more Object Oriented (I did need
some time and experience for this myself!). The OOP approach “hides”, from the initially

Back to Contents 23 / 30 Launch MFD manual © Szymon Ender

inexperienced MFD coder, details of the multiple vessels support, and leaves him the total joy of
MFD coding itself. Of course, an interested coder can still have a look at the library to see its
simplicity :)

There's also one thing to consider – an amateur's approach to coding MFDs would be to
place all the MFD's cyclical logic in MFD2::Update() method. The logic inside might then
include, for example: printing values on the MFD's drawing context, routines for playing sound on
certain events and for of course checking for these events, as well some guidance routines possibly.
There are two problems with this approach – first, the MFD2::Update() method is called only as
often as it's defined in the Orbiter Launchpad, and not as often as possible, so any guidance
routines, which require precision resulting from frequent flight data updates, would not work
properly. Second problem is that the Update() method is called only when the MFD itself is
opened, which is logical, when you think about what is supposed an Update() method, belonging
to MFD2 class do – update the MFD, and nothing more :) This means, that all your guidance and
event routines would not be called at all if you switched to external view or close the MFD after
enabling the guidance. The proper place to put such routines is in
oapi::Module::clbkPreStep(), which is called independently of the MFD. A problem arises
though, how to make your Module derived class communicate with the MFD and its variables other
way than by getting more global...

The Multiple Vessels Support Library solves all the mentioned problems. To sum up, the
library's features are:

– storing altered variables between MFD reconstructions

– storing the variables for each vessel independently

– ability to execute precision routines from oapi::Module::clbkPreStep(), while
communicating with the MFD's variables in an encapsulated fashion (without global
variables except for the Module derived class itself)

Although the library works perfectly and is proven to be CTD resistant even in such uncertain
events like vessel deletion, its interface may change (evolve) some time, because it's still being
developed. This means that I'd currently rather advice against dynamic linking with your closed
source project, but link the classes directly, thus having to GPL, or at least LGPL your project, or
risk broken API upon updating the library some day otherwise. This is not an Open Source black
mail at all – I'm just being honest.

Usage

There are just a few things that you need to do to use the lib's features, and I will cover them
in this paragraph. The package contains Doxygen documentation. You should open it now and keep
it as a reference, to view specific classes that I'll be talking about. The necessary steps are the
following:

1) Derive a class from MFDData to add any additional members and functionalities that you
want your MFD to contain. In this example, it will be called MyMFDData.

2) Derive from PluginMultipleVessels, where the method ConstructNewMFDData
should return a new MFDData derived object pointer (MyMFDData *). It will be stored
and managed internally. In this example, the Plugin derived class will be called
PluginMyMFD. For instance:

MFDData * PluginMyMFD::ConstructNewMFDData(VESSEL * vessel)
{
 return new MyMFDData(vessel);
}

Back to Contents 24 / 30 Launch MFD manual © Szymon Ender

3) Declare a global pointer to the derived Plugin class, initialize it and register it in Orbiter's
InitModule() along with the usual MFD inits.

PluginMyMFD * pPluginMyMFD;

// Called on module init
DLLCLBK void InitModule (HINSTANCE hDLL)
{
 // init spec and register MFD mode
 pPluginMyMFD = new PluginMyMFD(hDLL);
 oapiRegisterModule (pPluginMyMFD);
}

4) Declare a specific constructor that accepts the derived PluginMultipleVessels class and
Declare the derived MFDData in the main MFD class, for instance:

class MyMFD : public MFD2
{
 public:
 /// Default constructor
 MyMFD(DWORD w, DWORD h, VESSEL * vessel, PluginMyMFD * pluginMyMFD);
 /// Returns MFDData
 MyMFDData * GetData() const;

 private:
 MyMFDData * m_data;
}

5) Pass the Plugin to MFD's constructor, initialize the MyMFDData and perform a simple
check

// Constructor
MyMFD::MyMFD(DWORD w, DWORD h, VESSEL *vessel, PluginMyMFD * pluginMyMFD)
// Initialisation list
: MFD2 (w, h, vessel)
/* init m_data with PluginMultipleVessels's return value, depending on the vessel pointer.
If dynamic cast fails, the m_data member becomes NULL. */
, m_data(dynamic_cast<MyMFDData *>(pluginMyMFD->AssociateMFDData(vessel)))
{
 if (m_data == NULL) // Programming error
 sprintf_s(oapiDebugString(), 512, "m_data pointer type is not compatible with the
pointer that was being assigned to it in Ctor");
}

6) Place all vessel state updates in MyMFDData::Update() and call it in MFD2::Update().

// Repaint the MFD
bool MyMFD::Update (oapi::Sketchpad * skp)
{
 if (m_data == NULL)
 return false;

 // Update all ship's variables
 m_data->Update();

Back to Contents 25 / 30 Launch MFD manual © Szymon Ender

 // Draws the MFD title
 Title (skp, "My Multiple Vessels MFD");

 PrintResults(skp);

 return true;
}

7) If it's necessary, you can update each of the vessels' MFDData in your derived plugin's
UpdatePreStep() (or UpdatePostStep() if needed) that runs even if the MFD itself is
disabled and for all vessels simultaneously. Exemplary usage would be autopilots.

void PluginMyMFD::UpdatePreStep(MFDData * data)
{
 // Normally you'd use dynamic_cast and check if the returned value is NULL,
 // but this method is supposed to work fast enough.
 MyMFDData * myMFDData = static_cast<MyMFDData *> (data);
 AutopilotBase * apBase = m_apMan.GetAP(myMFDData->GetAutopilotType());
 if (apBase != NULL)
 {
 // Only now it's reasonable to call data->Update() not to waste resources in case it's
actually not needed.
 myMFDData->Update();
 apBase->Guide(myMFDData);
 }
}

void PluginMyMFD::UpdatePostStep(MFDData * data)
{
 // Must be implemented
}

The package contains a very simplified, working example of the library's usage. Good luck!

MFDButtonPage (LGPL)
Allows to create multiple MFD button pages, with little extra logic. To use it, derive from

the class, adding your MFD as a template argument. In the child class' constructor, register menus
and functions. You also need to add handlers of the button/key events into your MFD. The class'
instance could be stored in the oapi::Module class and passed to the MFD as a reference, or it could
be global. Check the Doxygen documentation for more details.

Math and Systems libraries (BSD)
The Math library and its dependency – (Coordinate) Systems library, contain some useful,

organised math for any space related project. They are licensed under BSD. Let's name the Math
modules:

– AzimuthMath – calculates azimuth required to reach a specified orbit. Both in rotating
and non rotating frame of reference

– BinSearchArg – searches for an argument of function, that produces a given reference
value of the provided function (an opposite of y = f(x)). It's very fast and has a complexity
of 2*log(maxArgument/precision)

Back to Contents 26 / 30 Launch MFD manual © Szymon Ender

– GreatCircleMath – calculates position of a ship in the Great Circle environment, given
percentage of distance passed between two defined geographic points. Normally such
calculations are valid for a quarter of the Great Circle. The extension inside allows for 360°
calculations with good precision and small execution time.

– GreatCircleAdvMath – helps drawing the Great Circle on a graphical context, like MFD.

– SpaceMath – some currently specific space related math, like calculating orbit's
momentum

– SpaceMathBody – containts equations that depend on planetary mass and radius (or
altitude above surface)

– VectorMath – manipulations of vectors, containing methods similar to OrbiterSDK – dot
and cross product, as well as calculation of angle between two vectors via atan2.

– GeneralMath – everything that doesn't fit into above categories. Currently contains
numerical Simpson integration, which accept any function pointer, having argument and
arbitrary data

The Systems library is a set of the following coordinate systems:

– Geo – geographic point

– Spherical

– Vect3 – Cartesian

– Point – a 2d point

as well as a class which converts one into another – SystemsConverter, along with its derived
version – SystemsConverterOrbiter, used to convert the systems into Orbiter's VECTOR3
and vice-versa. Additionally the Vect3 contains utility members like len() (vector's length),
norm() (normalised vector) and a set of intuitive overloaded operators, just like those in
OrbiterSDK.

A question may arise – why do we need to break open doors by doubling the OrbiterSDK?
The answer is – because they're not entirely open. The VECTOR3 is a C struct, that can't have its
own length and normalise methods, nor proper constructors. Each time you want an empty
VECTOR3, you have to initialise all the data to 0 individually, nor can you init it with other data.
This is not Object Oriented Programming. Another problem is, that the VECTOR3 is an integral
part of the SDK. If you wanted to use the SDK math in other, Orbiter-unrelated project by including
the SDK header, you're technically able to do it, but only as long as you operate on Windows, which
is not what you want as a free human being. An OOP note: For the same reason the
SystemsConverterOrbiter functionality has been placed in a separate, derived class. This way,
when you're developing some Orbiter-unrelated software based on the Systems package, you don't
need to include any big dependencies, such as OrbiterSDK in this case, just to have the definition of
the VECTOR3 structure.

MFDSound++ (LGPL)
MFDSound++ is Dan's MFD sound C++ wrapper. If you've ever used Dan's MFD sound

library, you'd know that it has an annoying limit of 10 sound samples per registered MFD, which is
probably a result of static data structure declaration inside the library. The remedy for this is
reserving one or a few sample slots for dynamic loading of the additional samples, after freeing the
memory of the slots in question. Assuming that more than 10 samples could lead to lack of memory
problems on today's machines, as if just one big sample couldn't, I'd like to only know the
limitation, but hide the remedy from the essence of my own code. Therefore I've created a wrapped

Back to Contents 27 / 30 Launch MFD manual © Szymon Ender

over the library, which requires you only to define only once all the samples you'll ever need, no
matter how many, and just signal the wrapper to play any of these samples, by passing their IDs,
and that's it. All you need to remember is that the first 9 samples will not need to be loaded
dynamically, therefore the first 9 samples should be the ones that are played the most often.

I encourage you to see the details in the a well documented example, located in Multiple
Vessels Support Library.

PID controller (BSD)
A very small basic PID controller class has been also isolated. I've heard of some PIDs

floating around the community, but the one that I got my hands on lacked the formal form, and as
far as I could see, was simply incorrect. You can use the PID class for example to build your own
autopilots using your own creativity. A practical example can be found in the Autopilot package.
You can also find the following thread very beneficial for controlling a ship in space:

http://orbiter-forum.com/showthread.php?t=23368

Here is the summary of this conversation:

Assume that you are in space, and have your current ship's attitude and the target attitude,
both given as VECTOR3. The rotation axis between the two vectors is perpendicular to them, so
can be obtained by calling cross(v1, v2) (cross product) and by normalising the result. Orbiter
core would accept the rotation axis as VECTOR3 and fire the RCS into the target direction at full
power. The method for this is VESSEL::SetAttitudeRotLevel(const VECTOR3 & th)
const. What you need now is to obtain the magnitude of the rotational acceleration (power), and
here's what you need the PID for. The PID needs the definition of current error, that is generally the
difference between what you need to have and what you currently have → error. Unlike evilfer, I'm
convinced that it's enough for any PID to operate on floating point data (for input/output), while
evilfer chose to operate on vectors for this purpose. So what's the error in this case? It's simply the
angle between the two vectors. You may remember, that I have a method in VectorMath class just
for that. I also think that it's a nice practice to limit the error to a range of (-1, 1), only if it's possible
to tell the maximal and minimal values of the error. For an angle, using atan2 function, we get the
result in a range of (-180°, 180°), therefore you can divide the error by Π (180°). What you need to
do now, is to adjust the PID's gains so that the ship reaches the target relatively quick, and without
oscillations. Picking the gains is a separate subject tough. For now, let's assume, that you know how
PID's gains work, to finish up one thing. Remember that we've normalised the rotation axis? This
means that its length is 1, which for Orbiter core will mean full power in the given direction. The
PID must be adjusted so that it keeps shortening the length as the vessel reaches the given attitude,
therefore it's wise to reserve the output of 1 to situations like moving away from target, and use
output values significantly smaller than 1, like 0.7, for situations like moving towards the target. So
assuming that the PID returns a value of 0.4, you must shorten the rotation axis VECTOR3, by
multiplying it by the returned power. Of course, you can't guarantee, that the output power will
always be smaller than 1. Sometimes it may exceed it. What happens if the rotation axis vector's
length becomes greater than 1? Orbiter core will rotate the vessel in a very ugly, desynchronised
manner. What you need, is to make sure, that if the power is greater than 1, then it stays equal to 1.

Let's return to the discussion about how the PID works. The PID consists of three parts:
Proportional, Derivative and Integral. I can fully explain only the first two parts. In a formal form,
the PID's output is defined as:

PID = Kp⋅e + Kd⋅
de
dt

+ Ki⋅∫ e dt

where:
Kp – proportional gain

Back to Contents 28 / 30 Launch MFD manual © Szymon Ender

http://orbiter-forum.com/showthread.php?t=23368

Kd – derivative gain
Ki – integral gain
e – error signal

The specific parts' gains define how much of influence the given error signal variation has on output
and together define the value of the output. The proportional part measures the current distance
from the required position, the derivative part measures the change of that distance in time
(velocity), and the Integral part measures the history of error changes. Now imagine a situation
where Kp > 0, Kd = 0 and Ki = 0. This means that the output will be solely the error, multiplied by
the Kp. So if the output is used to steer the ship towards the target, on the next frame, the error
would be smaller. Because of that, the output will also be smaller. Note however what is the output
– it's the acceleration. So even if the output is getting smaller, you are still accelerating towards the
target, and not decelerating at all, even if you are closer to the target, because you are in space,
where there's no drag to slow your motion. You'd start decelerating only after you've overshot the
target and the error sign changed. This would leave you constantly oscillating around the target.
This is where the derivative gain is supposed to kick in. Let's make the Kd > 0. Now, if you are
moving towards the target, the velocity, defined as (e – e_prev) / dt will give you a small, but
negative number. You increase its value by Kd and notice what happens to output: as the derivative
part's value is negative, the overall output is smaller than it would be without the derivative part,
and this is what makes the PID decelerate gracefully as it approaches the target. There's even some
more – imagine that you're moving away from the target. The proportional part reacts blindly to the
current error, but the derivative part evaluates to now a positive number, which in effect increases
the output, thus breaking the undesired movement faster. These are the things that you need to
understand when adjusting the PID. Unfortunately I can't explain the integral part. My colleague
explained to me that the integral part helps in reaching the desired position faster, although some
oscillations are involved.

Once you've adjusted the PID for the given ship, a problem arises when you want to use the
same adjustments for a different ship, which undeniably has different characteristics – the PID
adjustments will not work for this ship if its characteristics are much different. What you can do is
to compare these characteristics with the characteristics of the ship that the PID has been adjusted
for, use the same PID, and adjust its output by the ratio of values of the two sets of characteristics.
The characteristics in question are generally:

– power of the machine that acts on a controlled object (RCS)

– inertia of the controlled object (vessel)

In Orbiter both can be combined into one value – it will be the maximal rotational acceleration in all
three axes separately (pitch, yaw, bank – so in practice three values with similar meaning).
Obtaining the accelerations is a matter of solving the following equation:

ε=
T
I

where:
T – total torque (momentum of force) of a thruster group

I - momentum of inertia in a given axis

All the detailed math required for this calculation is placed in the Utils\AngularAcc class. The
characteristics have to be obtained constantly, because as your mass changes with the burned fuel,
the momentum of inertia changes along. After obtaining the accelerations, you have to compare
them to the reference accelerations, by dividing the reference accelerations by the obtained ones in
The resulting ratio should be used as a multiplier of the PID's output value. Remember to artificially
limit the output power to 1 after multiplying it by the ratio! A good question would be which of the
three obtained ratios (3 axes) should be used as the PID's output multiplier. My guess is that both
pitch (oX axis) and yaw (oY axis) could be used with success, but you have to make sure. You have

Back to Contents 29 / 30 Launch MFD manual © Szymon Ender

to do it only once though.

12) Disclaimer

ORBITER MODULE: LaunchMFD
Part of the ORBITER SDK

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along
 with this program. If not, see <http://www.gnu.org/licenses/>.

Back to Contents 30 / 30 Launch MFD manual © Szymon Ender

	1) Overview
	2) Installation
	3) Compatibility
	4) Usage
	Key summary
	HOT! Target inclination
	HOT! Target altitude selection for PEG
	Vessel variables
	PID autopilot
	PID autopilot manual configuration
	Pitch program
	Roll program
	Course correction (inclination)
	Course correction (LAN)
	Launch Compass
	PEG algorithm
	Graphical eycandies
	Sound configuration
	Time to Intersection
	Half of Orb. Vel. Time variable
	Direct ascent
	HOT! Final distance selection for Direct Ascent
	Great Circles (a'la Map MFD)

	5) Basic theory
	6) Tutorial
	Planning
	Defining Half of Orb. Vel. Time
	Performing the launch
	Correctness checks

	7) Known issues & to do
	8) Author's notes
	9) Credits
	10) Directories / files list
	11) Informations for developers
	Multiple Vessels Support Library (LGPL)
	Introduction
	Usage

	MFDButtonPage (LGPL)
	Math and Systems libraries (BSD)
	MFDSound++ (LGPL)
	PID controller (BSD)

	12) Disclaimer

